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INTRODUCTION

Multimode fiber op ‘¢ components are primarily used in
short-haul communications systems. Standard loss measurement
techniques do not accurately predict a multimode component's
performance when utilized in a Local Area Network (LAN)
because these methods do not account for the mode dependent
losses which are often exhibited by multimode devices.
Various techniques have been introduced to provide an
approximate description of the modal characteristics of these
components and include: differential mode attenuationl, mode
transition matrixz, and mode transfer function3. The
transition matrix formalism is described in the next section
of this report, while a detailed discussion of the other
methods is presented in the section entitled, "Alternative

Approximation Techniques."

Much attention has been given to the Mode Transition Matrix
(MTM) method. Holmes? introduced the technique in 1980 and
it has since been successfully applied to quasi-step-index
fibers4, multimode fiber transmission®, and graded index
fusion splicess. Gabriel? rigorously discussed the mode block
matrix formalism; generalizing the technique to allow for
other basis sets including Chebychev and Jacobi polynomials,
and Gryk, et al.8 investigated the sensitivity of the matrix
elements to variations of the input launch conditions. While

the technique offers a more complete description of a passive




fiber optic component's performance than standard loss
measurements, the method is inherently complicated since it
relies on a determination of the modal power distribution
(MPD) as well as the total optical power. It was the purpose
of the present work to remove the complications associated
with the determination of the Mode Transition Matrix, and
develop a quick, non-destructive test technique which
accurately predicts the performance of these passive fiber

optic devices when utilized in a Local Area Network.




THEORY

Modal Power Distribution

The optical power propagating in a multimode optical fiber is
distributed between the various modes of the fiber. The
modal power distribution, P(d,V), gives a complete description
of the optical power carried by each guiding fiber mode.

Grau and Leminger9 derive a relationship between the modal
power distribution and the near field pattern, N(r), for

axially symmetric fibers in the mode continuum approximation:

2 A
N(r)=2 (3%) f

gis)A

R(r.8)
dsf [R?(r, 8)-v2] /%P (5, v) av
0 (1)

where,

RS =VID .o @
8 =VER-g @) .

s is the normalized radius, g(s) is the refractive index
profile, V is the fiber's V-number, ko is the free-space
wavenumber, nj is the index of refraction along the axis of
the fiber, A is the refractive index contrast, O is the
propagation constant, and V is the azimuthal mode number.

If the MPD is assumed to be only a function of 8 then the

total power is found by integrating the MPD,

P = f P(8) m(3) 46
0 (2)

where m(d) is the mode density as given by Leminger and

Graul0O integrated over v. For parabolic index profiles, the




density of modes is given by

m(®) =Y 5
2A (3)

These results assume a mode continuum approximation (the MPD
is considered to be a continuous function of continuous mode
parameters) since the phase of the light has been ignored
during the measurement of the near field pattern. 1In other
words, these results are only valid for incoherent light, or
if they are interpreted as the average over all possible
speckle patterns for coherent light. Mickelson and
Eriksrudll discuss the mode continuum approximation in detail
and determine the range of linewidths for which the modes

form a continuum for a parabolic index profile to be:

8h, 124
A akong (4)

where ng is the effective group index. For a typical
100/140um fiber the source linewidth must on the order of
0.25nm. This is not very restrictive since most fiber optic
sources, excluding narrow linewidth distributed feedback
laser diodes and the like, will generally exhibit linewidths

on the order of a few nanometers.

Although the near field pattern is uniquely determined by the
modal power distribution, it can be shownll that the converse
is not true. Therefore, an assumption as to the form of the
MPD must be made if the MPD is to be determined from a set of
near field pattern data. One possible, and often used,

simplification requires the modal power distribution to be




independent of the azimuthal mode number, v. Then a unique
determination of the MPD can be made from the near field

pattern and is given by:

— - dN(r) 1 _& _
= Ta _
P(5) Ak A g6 evaluated at A g(s) 5)

For parabolic index profiles, this reduces to:

-Ea? l dN(l')
28(mkoy? T O (6)

P®) =




Mode Power Vector

The modal power distribution can be written as a linear

combination of an orthogonal, complete set of functions,

658,
P@) m(8) =Y, ¢; ¢;()
j]

(7)
where the coefficients are given by
A
¢=-L J P(3) m(3) ¢;(3) d&
& o (8)
The functions, ¢j(8), are not normalized. The set of
normalization constants are given by
.Y
A}:J 67(5) db
o (9)

If the basis functions are not orthogonal, the coefficients
must be determined by simultaneously solving a set of linear

equations of tha form

A

f P() m®) ¢;(8)dd= Y ¢, (f n(8) 9;(3) dd)
0 n 0 (10)

For the purposes of this investigation, however, an
orthogonal basis is assumed. The modal power distribution
can be described as a mode power vector, whose elements are

given by:




P=(Py, Py, .., P;,..P,) such that Pj=c;A}

(11)
If we choose a normalization for our basis set such that
A
j ;(8) dd = A?
o (12)
then the total power can be written in the form:
Piot =Z Pj
f (13)




Mode Transition Matrix

The modal coupling of a passive fiber optic component can be

described by the transformation

P (8) m(3) = f T(5,8) Pi (5') m(3') d&'
o (14)

where Pi(8)m(8) and PO(§)m(8) describe the MPD entering and
exiting the component, respectively. Inserting equation (7)

for the modal power distributions of equation (14), we get:

D L@ =, c( f T(3,8) ¢;(8") d3")
j j o (15)

Multiplying each side by ¢x(8) and integrating over & yields:

4

PO = 2 Pl (;1]; f o (8) T(3,8) ¢;(8") d d¥')
J ] 0

(16)
which can be written as a matrix equation of the form:
P°=T«P! (17)
where the matrix elements are given by:
A A
Tig =JE f, ], x(® T(8,8" ;(8) db d&'
] (18)

and ﬁi and POare the aforementioned mode power vectors
determined at the input and output of the fiber optic

component, respectively. The mode transition matrix, T,




described in this fashion is completely equivalent to the

mode transfer function T(§,8'). Unfortunately it is of

infinite dimension, and therefore a solution to the matrix

equation (17) can not be determined.




Finite Element Matrix

The matrix of equation (18) is of infinite dimension, and as
such, is of little practical importance. If we assume,
however, that the modal power distribution can be
approximated by a finite sum of N orthogonal functions

then the mode transfer function is approximately described by
an NxN matrix. For simplicity, we may assume the expansion of
the modal power distribution to be truncated after only two

functions.

P(8) m(8) =c; ¢1(5) +c2 ¢2(0) (19)

The mode transition matrix is then given by the 2x2 matrix:

il

| Tu Te ]
Ta Tz

(20)
The four independent elements can now be uniquely determined
by measuring the two sets of input and output modal power

distributions. If we denote the independent measurement sets

by P(a) and P(b), then equation (17) yields a set of linear

equations of the form

P°(a)=T+Pi@) : P°®)=T+Pi(b) 1)

This set can be written as a single matrix equation

P°=T.P' where §°=[ ?(a)P?(b)} =i___[ il(a)Pil(b)jl

and P j .
P3(2) P3(b) P(a) P;3(b) (22)

whose solution is given by

10




= =0 :‘-‘.i -l
T= P «(P) (23)
It is obvious that the inverse of Ei must exist for the

transition matrix to be determined. Therefore, the

determinant of P1 must not vanish.

det (P') = Pj(a) P;(b) - P(b) Pj(a) #0 (24)
This requires that the two sets of modal power distributions
used to calculate ? must have been for linearly independent
input MPDs. Although this method could theoretically be
extended to a matrix of very large dimension, diffraction
limitations restrict the number of suitably independent input
conditions to only a few (2 or 3). Unraul2 suggests that a
2x2 matrix should be sufficient to describe the modal
properties of many fiber optic components and is therefore

the focus of this investigation.

11




Step Function Basis

Orthogonal step functions form a physically descriptive basis
set. Considering the 2x2 matrix aforementioned, the two
orthogonal step functions can be written:

1, 8<3, 0, 06<d,

1= =

0, 55, 1, 83, (25)

The mode power vector is then given by:

3 a
Py =I P@®)m(5)dd, P;= I P(5) m(5) dd
0 L (26)

Physically, this basis set integrates the modal power
distribution into low- and high-order mode blocks. Pj is the
total power contained in all the modes of propagation
constant 8<dp, while P2 contains all the power propagating in
modes of propagation constant 8>0o. The mode transition
matrix elements of equation (20) calculated using this basis
can then be interpreted as mode block coupling coefficients,
where T11 describes low- to low-order mode block coupling,
T12 describes high- to low-order mode mode block coupling,
T21 describes low- to high-order mode block coupling, and T22
describes high- to high-order mode block coupling. This
physically meaningful interpretation restricts the range of
each coefficient to be between 0 and 1. The major limitation
of this basis set lies in its inability to accurately

describe the modal power distribution, as was assumed in

12




equation (19). The method still has merit, however, if it is
assumed that the transfer function of equation (14) does not
distinguish between modes in the same mode block. In other
words, the transfer function must be assumed to be of the

form:

( Tn 8<Bo, 8'<8,
T 8<d,, 8'>9,
Ta 3>8,, 8'<d,
Tz 8>8,, 8'>8, (27)

T($,8") =

so that the transfer equation (14) can be written as a matrix
equation regardless of the form of the modal power
distribution. This is the assumption made by Holmes?2 and
others who have used mode blocks to calculate the mode
transition matrix, and its validity for each passive fiber

optic component must be determined from experiment.

13




Standardization

The Mode Transition Matrix method is well understood and
attempts have been made to standardize some of the
assumptions made and procedures used to calculate the MTM of
a fiber optic component. Until this section, the theory of
the MTM has been dealt with in as much generality as
possible, but the following sections require the use of these
standardizing assumptions. Therefore, these "standards" are
listed here and are assumed in all subsequent discussion of
the mode transition matrix.

1. The Mode Transition Matrix will be assumed to be a 2x2
matrix of the form of equation (27) where the cutoff
mode value will be given by: 8, = 0.5A.

2. The independent launch conditions to be used will
consist of an underfilled launch (small-spot)
excitation, and an overfilled launch (power in all
guided modes) .

3. For the purposes of all calculations involving the modal
power distribution, the refractive index profile is
assumed to be parabolic.

4. The modal power distribution is only a function of the
propagation constant, 8. Optical power is uniformly
distributed between azimuthal modes with the same

propagation constant.

14




EXPERIMENTAL DETAILS AND CONSIDERATIONS

Near Field Pattern Measurements

Assuming the modal power distribution is strictly a function
of the propagation constant, P(§,v)=P(d), then the modal power
distribution of a parabolic-index optical fiber can be
determined from the measured near field pattern using
equation (6). The near field pattern can be measured using a

CCTV camera as illustrated in Figure 1.

High Resolution CCD

i Digitizer

Microscope t | '
Objective Data Storage

N\ 7 and Computation
IE' Optical

Fiber

Figure 1. Near Field Pattern Measurement System

The optical power exiting the fiber is imaged onto the CCD

array using a high-powered, large numerical aperture

15




microscope objective. For example a 40X, 0.65NA microscope
objective could be used to image a 100/140um, 0.3NA fiber.
The fiber endface must be cleaved or polished to a minimum
cleave angle and the fiber endface should contain no flaws.
The CCTV camera must accurately measure the optical power as
a function of position, and therefore must maintain linearity
and minimize distortion. The CCTV output signal is then
digitized and stored. Since axial symmetry is assumed, the
near field pattern used in equation (6) is only a function of
radial position. Therefore, if the entire two-dimensional
NFP is measured, the center must be calculated and the data
averaged and stored as a function of the radius. Otherwise,
the NFP can be measured linearly across a diameter of the
fiber. Again, the fiber center must be calculated and the
data averaged and stored as a function of the radius. There
are several methods available to calculate the center of the
fiber. One method calculates the fiber's "center-of-mass".

The fiber center is then given by:

_ !N(r)xdx =]N(r)ydy

o= [ NEmyax Yo [NG) dy (28)

A second method calculates the position of all points of the
NFP which are of equal radiance (e.g. 10% of the maximum
radiance). This ring of positions is then fit to a circle of

the form:

(x-Xo) 24+ (y-Yo) 2 =1 (29)

16




where Xg,Yo describe the position of the fiber's center.

Both of these methods have one-dimensional analogues should
the NFP be measured in a single dimension across the fiber's
diameter. Further information regarding the measurement of
the Near Field Pattern can be found in FOTP-43, "Output Near-
Field Radiation Pattern Measurement of Optical Waveguide

Fibers."

17




Modal Power Distribution Calculation

In order for the Modal Power Distribution to be calculated
using equation (5), the fiber radius and refractive index
profile must also be determined. The fiber core radius
should be measured using FOTP-58, "Core Diameter Measurement
of Graded-Index Optical Fibers." Several methods exist to
measure the refractive index profile of an optical fiber,
some of which are outlined in Marcusel3. The refracted ray
method is further described in FOTP-44, "Refractive Index
Profile, Refracted Ray Method." For the purposes of this
investigation a square-law profile fiber has been assumed.

A calculation of the MPD requires differentiation of the near
field pattern. Because of the noise inherent in any
measurement of the NFP, direct differentiation results in an
"amplification" of the noise such that the MPD becomes
physically meaningless. Therefore, some type of smoothing
operation must be performed on the NFP before
differentiation. One suggested smoothing operation fits the
NFP data to a linear combination of smooth functions before
differentiation. Chebychev, Type II, {Un(x)} are the
polynomials of choice for this investigation because they are
complete and orthogonal over a range [-1,+1] and have a
weighting function with a functional dependence resembling

the refractive index profile

w(x) = (1-x2)1/2 (30)

18




which accelerates convergence. The linear combination of
functions is truncated after the fitted polynomials have
sufficiently converged to the NFP data. Differentiation can
be accomplished algebraically given the knownl4 recursion

relation

(1-x2) Up(x) = -n x Up(x) + (n+1) Up.1(x) (31)

19




Mode Selective Excitation

In order for the 2x2 transition matrix of a passive fiber
optic component to be calculated using equation (23), the
input and output modal power distributions must be calculated
for two, linearly independent input conditions. A ray of
light incident on the fiber cross section at a radius r and

angle 8 with respect to the normal, excites a mode of the

propagation constant:

d._12, 5in%0
A a2 (NAy (32)

Graphing lines of constant propagation constant yields the

phase-space diagram illustrated in Figure 2.

10

Mode Number & = 0.5A

(8in0/NA)
o
th

00 0s 1.0
(x/a) 2

Figure 2. Phase-space diagram for
parabolic~index optical fiber.

The guided modes of the fiber are represented by the shaded

region of the diagram. Phase-spacas diagrams can be used

20




effectively to calculate the modal power distribution for

various launch conditions.

1.0 10 _
[ ]
o~ o ﬂ
g < z 8§

z |

So.s Sos a E‘
L 4 P
L) 2 e
4
[ ]
0.0 0.0 ~

0.0 0.5 10 0.0 0.5 1.0 00 0.5 1.0

(z/a) 2 (z/a) 2 8/A
(a) (b) (c)

Figure 3. (a) Modes excited by an uniform spot r=0.7, 3in6=0.7, (b) Modes
excited in test fiber allowing for coupling between nearly degenerate modes,
and (c) resulting Modal Power Distribution.

Figure 3a shows the phase-space diagram for an underfilled,

uniform, spot excitation. The spot is assumed to be of a

diameter equal to 0.7 the diameter of the fiber under test.

The numerical aperture is also assumed to be 0.7 the NA of

the fiber under test. The power is assumed to become

uniformly distributed between modes of constant mode number

after propagating a "short" distance into the fiber,

therefore the power propagating in each mode must be averaged

between all of the modes of the same propagation constant as

illustrated in Figure 3b. The product, P(d)m(d), entering the

test fiber is calculated by integrating the optical power

along lines of constant 8. The resultant is illustrated in

Figure 3c. As we can see, the underfilled spot excitation

excites a predominantly "low-order™ mode group. The phase-

21




space diagram and P(d)m(d) of a uniformly overfilled fiber are

illustrated in Figure 4a and Figure 4b.
10

(sin0/NA)
[=]
(7

P(3)m(d)
(arbitrary units)

0.0

o
=]

0s 10 0.0 0.5 1.0
2
(z/a) &/8

(a) (b)

Figure 4. Modes excited by a uniform spot r=1.0, s8inf=1.0, and
(b) resulting Modal Power Distribution.

An overfilled spot launch (r=a, sinB=NA) excites a
predominantly "high-order" modal power distribution.
Therefore, we have determined that the input modal power
distributions generated from underfilled and overfilled spot
excitations are linearly independent. A mode selective
launcher which generates these two input conditions is

illustrated in Figure 5.

chromatic 10X

|

i test
filter microscope
— e e objective component 70/70 core
r(w + . e &i ........ S 2 _____—_——____———-
-/ / '\'\. b ————————
. o
~ o eaaiinaganan
~ ’ 4 ¥ | 3-axis \——
vt 73 K translation s
Light image << stage 100/100 | core
Source spot \; top

reverse viewing
(a)

Figure 5. (a) Mode Selective Launch System, and
(b) Underfilled and Overfilled Launches
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An incoherent source illuminates an adjustable spot which
is imaged using two microscope objectives onto the endface of
the optical fiber. The concentricity of the spot and fiber
is assured by viewing the fiber endface through a
beamsplitter which is introduced between the objectives. An
adjustable field stop is also placed between the objectives
for the purpose of selecting the input numerical aperture.
Agarwal, et. al.l3 discuss mode-selective excitation methods
in considerable detail and give several alternative methods

to the one aforementioned.

23




FOUR PORT POWER SPLITTER

(experimental comparison of loss prediction methods)

A comparison of loss measurement methods was made using a
four-port power splitter which was fabricated by

concatenating three 1x2, 3dB power splitters as illustrated

— %

in Figure 6.

TP
c2
/- 2\ ST-Type
8__———-—':\39: Connectors
CH
Cl

& —5—O0D
C3

Figure 6. Four-port power splitter fabricated from serial 3dB power splitters.
illustrating the through ports (TP) and coupled ports (CP) for the
individual splitters: Cl, C2, and C3.

Each power splitter was connectorized using ST-type
connectors. Table 1 presents the measured mode transition
matrices of the individual splitters (a) and the matrix for
each output port of the concatenation (b). The predicted
concatenated matrices, obtained by multiplying the individual
component matrices in reverse order of their physical
sequence, are also presented for comparison (c). The
predicted values are in good agreement with the measured
values. The input power vectors for the two independent
launch conditions were measured and were found to be ?L =

[0.801, 0.199] for the underfilled launch and Py = [0.469,

24




0.531] for the overfilled launch.

Predicted loss values of

the concatenation were calculated using three methods. The

first of these, Method 1,

assumes the loss of the

concatenation can be described by the addition of the loss

values of the individual components measured using an

overfilled launch.

This would be the predicted value if FOTP

34 Method A were used to characterize the components.

0.742 -0.033
-0.056 0.485 TP

Cl

[ 0.250 0.086 ]CP
0.118 0.421

0.098
0.064

0.567
. -0.055

0.146
. 0.071

0.079
L. 0.074

0.032
0.164

-0.055
0.247

0.049
0.197

.036
.186

o O

(b)

0.792
-0.051

-0.059
0.516 TP

C2

0.178
0.092

(a)

A

D

0.065 ]CP [
0.345
0.128

0.049

0.591
. -0.067

0.192
. 0.044

0.058
. 0.077

(c)

0.
-0.
0.
0.125 0.387

.026
.164

.055
.252

.053
.201

.052
.174

784 -0.034
056 0.488

C3
191 0.083

Table 1. Mode Transition Matrices for (a) 1x2, 3dB power splitters,

(b) 1x4,

6dB power splitters,

outputs from multiplied matricies.

The second method, Method 2,

(c) calculated concatenation

assumes the concatenated loss

can be described by the addition of the loss values of the

individual components measured using an underfilled launch.

This would be the predicted value if FOTP 34 Method B were

25
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used to characterize the components. Finally, Method 3
assumes the concatenated loss can be determined from the
multiplication of the power vector by the mode transition
matrix of each component in reverse order of its physical
sequence. Assuming a detector response vector of unity, the

optical loss is given by:

ol

loss (dB) = -10 « log (——2=T1*Piny (po e Fin=(Pl)andT= @
1P, P,

(30)
The measured and predicted loss values for each optical port

and both launch conditions are given in Table 2.

Predicted Loss (dB)
Measured Loss (dB)
PORT Method 3
Method 1 Method 2

Overfill JUnderfill Overfill }Underfill
A 7.46 7.75 7.15 7.20 7.35 7.46
B 4.58 3.42 4,83 3.62 4.55 3.38
C 6.35 0.53 5.91 5.75 6.10 6.21
D 7.25 7.82 7.51 8.59 7.37 8.15

TABLE 2. Measured and predicted loss values for 1lx4 power splitter fabricated
from three 1x2 power splitters. The predicted values were calculated using
three methods: 1) additive overfilled losses, 2) additive underfilled losses,
and 3) mode transition matrix technique.

The discrepancies between measured and predicted loss values
can be calculated for each method. Averaging the
discrepancies for each method between ports, and assuming the
uncertainty of the method to be given by the standard

deviation of the discrepancies between ports we get the

26




discrepancy values listed in Table 3. 2all three methods
accurately predict the average loss of the concatenation for
a launch condition similar to the one used in the method. 1In
other words, the average loss through the four ports of the
concatenation can be determined accurately (average
discrepancy < 0.1dB) for an overfilled launch if Method 1 or
3 is used, while the average loss of an underfilled launch

can be predicted accurately if either Method 2 or 3 is used.

Discrepancy Between Measured and Predicted Loss (dB)

Overfill Launch Underfill Launch
Method 1 -0.03 £ 0.34 -0.24 £ 1.30
Method 2 -0.39 £ 1.00 -0.08 + 0.54
Method 3 -0.07 £ 0.13 -0.01 £ 0.19

Table 3. Discrepancy between measured and predicted values averaged
between optical ports with an uncertainty equal to the
standard deviation between optical ports.

Method 3 predicts the average loss of both launch conditions
accurately because it inherently takes into account some of
the modal properties of the passive network. This is one of
the advantages of the matrix approach. In system design,
however, the loss must be predicted accurately for each port,
not just the average loss through all ports. Therefore we
must examine the deviations reported in Table 3. The
underfilled loss method does not accurately predict the

concatenated loss of each port for either launch condition,
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and therefore, should not be used. The overfilled loss
measurement method predicts the loss of the concatenation for
an overfilled launch sufficiently well (deviation < 0.5dB),
but can not predict the loss of the underfilled
concatenation. The matrix method, however, can predict the
loss of each port very well (deviation < 0.2dB) for either
launch condition. It is this predictive capability which is

the main advantage of the matrix method.
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MTM MEASUREMENT SYSTEM

Introduction

The usefulness of the mode transition matrix method has been
demonstrated in predicting the loss of a concatenation of
fiber optic components. The technique, however, is
inherently complicated, requiring a measurement of the near
field pattern as well as the total optical power both
entering and exiting the device under test for two
independent excitation conditions. These measurements
require expensive equipment such as a CCD array or CCTV
camera and the data must be processed using complicated
mathematical operations such as curve fitting,
differentiation, and integration. 1In the following sections,
an invention (NAVY CASE NO. 73670) is described which allows
the Mode Transition Matrix of a passive fiber optic component
to be determined quickly and accurately using a novel method
which does not require the measurement of a near field
pattern. The invention only requires an ability to measure
the total optical power entering and exiting the component,
and all calculations are limited to algebraic operations
involving matrices, which are simple in comparison to

differentiation and curve fitting routines.
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Alternative Basis Sets

Previously, orthogonal step functions {§;(8), ¢2(d)} were

described and used because of their physical significance.
While it is desirable to retain the descriptiveness of such a
basis set, other basis sets may be more convenient and
adaptable to measurement procedures. It has been shown that
the coupling of modes in a fiber optic component can be
written as a matrix equation (17) for an orthogonal step
function basis described by equation (25) where the input and
output power vectors are described by equation (26). If a
second basis is chosen {¢'1(8), ¢',(d)} and the power vectors
Pi,P9are obtained using this basis set then a matrix

equation can be written

P°=

‘i

-P (31)

=il

The power vectors calculated using the step function basis
are related to the power vectors calculated in this second
basis by a matrix transformation

P=c+P (32)

where the matrix elements are determined from

2
4 ®) = 2, ¢ ()
k=l (33)
Since the second basis set is not complete, this equality can
not be unconditionally satisfied for all 8. 1If nothing is

known or assumed about the modal power distributions entering

or exiting the device under test, equation (33) can be solved
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in a least squares sense. The solution for € is then
determined to be

Z o= =
c=a-p (34)

where

o =I 0:(3) (5)d5 and By =f (8 ¢;(3) dd
o ! (35)

However, if the functional form of the modal power
distributions is known or assumed then a better estimate for C

can be obtained from

3=-P7—-Fhl where $=( Pt‘ Py ) and $=( P'Tl P )
P, P P P? (36)
where the modal power vector components are calculated using
the assumed input and output MPDs. In either case, given this
transformation matrix, i, the transition matrix calculated

using orthogonal step functions, T, is related to the

=1
transition matrix calculated using the second basis set, T,

by
-1

(g]]

=TeT o

=il

(37)
The invention to be described uses mode filters and fiber optic
switches to selectively measure the power vectors and mode
transition matrix of a non-orthogonal basis set. The basis set
can be determined using phase space diagrams, and the
transformation matrix, ¢, calculated either using equation (34) or
(36) . The mode transition matrix described by equation (27) can

then be determined using equation (37).
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Description and Operation

The functional diagram of the invention is illustrated in

Figure 7.

and Display

Figure 7. Functional Diagram of Matrix
Measurement System.

The device can be broken into four major sections,

1) mode selective launcher, 2) input/output optics, 3) mode
selective detector, and 4) data storage and matrix calculation
software. The four sections will be discussed independently. For
the purposes of this report, the device under test is assumed to
be made of 100/140um, 0.3NA optical fiber, operating at a
wavelength of 850nm. However, a device fabricated with any size
optical fiber operating at any wavelength could be used provided
all fiber sizes, source, and detection devices mentioned in this

report are scaled appropriately.
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Mode Selective Launcher: The mode selective launcher is

illustrated in Figure 8.

\Xto feedback

electronics
l_ — ey FO Switch
|
|
Parallel
Switchingjx B
[
|
'—- —_— - FO Switch
to I/0

Figure 8. Mode Selective Launcher
The launching device consists of a pigtailed, high-power
850nm light emitting diode (any LED that overfills the
100/140um fiber), and two 100/140um fiber optic switches
(Dicon Fiberoptics #S-12-L-100-ST-P or the like), operated in
unison, to provide selection between two optical paths. The
LED must be maintained at a constant optical output power
throughout the duration of the measurement (the time scale
could vary between a few seconds and a few minutes depending
on whether or not a microprocessor has been used for

control). A typical feedback circuit to maintain constant
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optical power is illustrated in Figure 9, but any like

circuit may be used without failure.

to +5V +5V
launcher

optics {\@

®
Figure 9. Optical Feedback
Circuit designed to maintain
constant output optical power
from LED

The first path, A, consists of a short piece of a ‘small-
core’ (e.g. 50/125um, 0.2NA) optical fiber. The purpose of
this fiber is to selectively filter high-order modes from the
device under test. The low-pass characteristics of this
undersized fiber are illustrated in Figure 10a. The second

path, B, contains a mode mixer. This mode-mixing fiber
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should provide an overfilled mode distribution (all guided
modes contain power) to the device under test as illustrated

in Figure 10b.

1.0

(b)

(a)
0.5

Transmission

0 0.5 1.0

Normalized Mode Number

Figure 10. (a) Mode Filter Selectively
passes low-order modes, and (b) Mode
Mixer overfills fiber.

Therefore, this section of the invention allows the user to

switch between underfilled and overfilled launch conditions.

Input/Output Optics: The input/output optics section
consists of two fiber optic switches, which are operated in
unison to provide the user a selection between two optical

paths as illustrated in Figure 11.

—~ - Parallel
Switching
| |

| c |

To Mode - From Mode
Selective =] . Selective

Detector D Launcher
FO Switch FO Switch

Figure 11. Input/Output for Measurement
System.
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The first path, C, contains nothing more than the outputs of
the fiber switches teriiinated with fiber optic connectors
which are mated to each other (e.g. ST-type connector). The
second path, D, contains the outputs of the fiber switches
terminated with similar fiber optic connectors which are to
be mated to the device under test. This section therefore
provides user selection of an optical path through a
reference fiber containing a single connector or through the

c evice under test.

Mode Selective Detection: The mode selective detection

section is similar in design to the mode selective launcher

and is illustrated in Figure 12.

. t0 data storage
and calculation

X

I— — e e 70 Switch
|
|
Parallel
Switching F E
|
|
'—- —_— - FO Switch
from I/0

Figure 12. Mode Selective Detector
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Again, two fiber optic switches are used in unison to select
between two optical paths. The first path, E, again contains
a short piece of undersized, 50/125um, optical fiber to
filter the high-order modes. The second path, however,
contains no additional fiber, and merely provides an
uninterrupted path to the detector. The detector must be
large enough in area to collect all of the light exiting the
100um optical fiber, and must be stable for the time duration
of the measurement. A power meter, such as the Photodyne
Model 22XLC with a model 150 Silicon Detector Head, c&an be
used for power measurements, and offers the advantage of a
large dynamic range. The mode selective detector allows the
user to measure the power in two independent mode groups.

The first group contains predominantly low-order modes, while

the second contains all guided modes.

Data Storage and Matrix Calculation:

Figure 13 illustrates the general scheme for the Mode
Transition Matrix Measurement system. The device consists of
three sets of fiber optic switches. The first set is
incorporated into the launch optics and can switch the
optical path between paths A and B of Figure 8. The second
set is part of the input/output optics and switches the
optical path between paths C and D of Figure 11. The final
set of switches is found in the detector optics and switches
the optical path between paths E and F of Figure 12. The

three sets of switches allow 23=8 total independent optical
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paths. A measurement of the optical power which propagates
through each of these paths must be measured and recorded.
For convenience I shall denote these power measurements by
Pxyz: where x describes the launch optical path and can have

the values A or B, y describes the input/output optical path

A

gy [ detector}-storage |-+ pfocessmﬂ

....................................................................

FO switch s FO switch
microprocessor
controlled switching :
100pm S ( ) """"" Overfilled
fiber mode mixer
\ mode filter mode filter /
FOswitch | ¢ |- S FO switch

w/ connector

[ =- ~u W,

FO switch l FO switch

from DUT to DUT

Figure 13. Microprocessor controlled Matrix Measurement System

and can have the values C or D, and z describes the detector
optics and can have the values E or F. Then the eight power
measurements can be recorded as PaACE, PBCE, PADE, PBDE, PACF,
PBCF, PADF, PBDF. These power measurements can be grouped

into two, 2x2 matrices. The first shall be called the "Input

Matrix" and is a description of the power which propagates
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through the reference fiber. The second is called the
"Output Matrix" and describes the power which propagates
through the Device Under Test (DUT). The Input and Output
matrices are then defined as:

S ool BECE Hadiid (38)

With these measured values the component's matrix can be

calculated by multiplying the matrices according to:

=" = =.

T =0-I (39)
where T is the component's matrix measured relative to the
mode groups selected by the invention. The mode transition
matrix, ?, is related to ?' by the similarity transformation
of equation (37). The transformation matrix, 3, can be either

theoretically determined from a description of the fiber used

in the mode filters, or measured experimentally.

Transformation Matrix c¢: The transformation matrix, i,
"rotates™ the optical power vector measured using the MTM
Measurement system into the power vector which would be

measured using the conventional mode block representation.
As discussed previously, the transformation matrix can be

determined in either of two methods.
The first method assumes nothing is known about the

functional form of the modal power distributions entering and

exiting the device under test. The method soclves equation
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(33) in a least squares sense. The solution, presented as
equation (34), requires a determination of the basis set
which describes the mode filters used in the selective
detection unit of the MTM measurement system. This can be

accomplished using the phase-space diagrams illustrated in

Figure 14.
1.0
o™ o

s g
S 05

[~]

i 3
00

0.0 0.5 1.0
(x/a) 2

(a) (b)

Figure 14. (a) The modes transmitted by an undersized fiber mode filter in a
100/140um fiber. (b) The guided modes of a 100/140um fiber.

Path E contains a piece of "small-core" fiber as described
previously. For the purposes of the following calculations,
this mode filtering fiber is assumed to be 50/125um, 0.20NA
graded-index fiber. The area of the large triangles
represents all of the guided modes of a 100/140um, 0.29NA
graded-index optical fiber. The shaded triangular region of
Figure 1l4a represents the portion of the power which will be

transmitted through the mode filter. The length of the

diagonal line, L(8), is proportional to the fractional power

allowed through path E for a given mode number 8 and is

determined geometrically to be
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Y2 3, 8<%A
= 1. 1 1
L(d) Vf% 5), 8>4A8<2A

0, 5>1a
72 (40)

The basis function, ¢'3(8), is calculated by dividing this
length by Y28 in order to account for the density of modes.
Therefore for this mode filter we have determined the basis

function to be

1
1, 8<4A
() = 1. L 1
01(8) = po 1, 8>4A,8<2A
0, 1a
8>2 (41)

The second basis function is easier to obtain. Since path F
of the mode selective launcher transmits all the optical
power regardless of mode number, the basis function is given

by

»d)=1 for all (42)

The transformation matrix can now be determined from equation
(34) and equation (35) and is given by

§=( 0.706 0.232

-0.706  0.768 (43)

It is interesting to note that if a 70um, 0.2NA graded-index
fiber were used in path E then the mode filter basis function
would equal the low-order mode block basis function. The
equality of equation (33) could then be unconditionally

satisfied for all §, and therefore the transition matrix T

could be determined exactly.
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The second method requires a knowledge of the modal power
distributions entering and exiting the device under test. If
it is assumed that all power vectors transform under the same
transformation matrix, E, then the transformation matrix can
be determined using equation (36). This is illustrated in
Figure 15. Figure 15a is a phase-space diagram in which the
shaded region represents the fiber modes which contain
optical power in a 100/140um fiber which has been excited by
a 50/125um step-index fiber. 1If we project this shaded
region of unit intensity onto the low- and high-order mode
blocks of Figures 10c and 104, then we obtain a power vector
in the mode block representation equal to Pp = (1.2, 0.0].
Similarly if we project the shaded region of Figure 15b,
which shows a uniformly overfilled mode distribution, onto
these mode blocks we obtain a power vector given by

P = [0.25, 0.75]. These are the power vectors obtained in
the mode block representation. It is a slightly more subtle
argument to determine the power vectors as would be measured
by the MIM measurement system. Figure 16 illustrates the
problem. The mode-filtered launch is again illustrated in
Figure 16a. The modes which lie along a diagonal are of the
same radial mode number and are therefore nearly degenerate.
It has been assumed that the optical power is strongly
coupled between these modes, and therefore the power
contained in the square becomes uniformly distributed along

these diagonal modes as seen in Figure 16b. Path E of the
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Figure 15. Modes propagating optical power in (a) underfilled launch,
and (b) over filled launch; (c¢) low-order mode block, and (d) high-order

mode block; projection of (e) underfilled launch, and (f) overfilled
launch onto mode blocks.
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mode selective detector measures the power which is contained

in the triangular group of modes illustrated in Figure 1lé6c.

10 10 1.0
« ~
g £ g
S05 =05 305
C 4 ]
L] L] ®
0.0 0.0 00
00 0s 10 0.0 0S5 1.0 0.0 0.5
(z/a) 2 (r/a) 2 (x/a) 2
(a) (b) (c)
Figure 16. (a) The modes excited by an undersized fiber mode filter in a

100/140um fiber.
along diagonals (b). The mode filter in the mode selective detector filters

many of the higher-order modes (c).

Therefore, in order to determine the power vector measured by

the MTM Measurement system, the launched mode block must be

projected onto the detector mode block after allowing for the

averaging of power among degenerate modes. This is a subtle

10

Strong coupling between degenerate modes averages the power

point, and results

conditions: Pp
second coefficient
the mode selective
continuous path to

the transformation

c

in power vectors for the two launch

[0.8215, [0.125, 1.0]. The

1.0], PR’
of each vector is unity because Path F of
detector allows all fiber modes a

the detector. From these power vectors,

matrix can be calculated.

Pp Pp
=[ 1.00 0.25 ].[0.8215 0.125 ]‘1
0.00 0.75 1.0 1.0
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1072 0.116
-1.072  0.884 (44)

This matrix differs only slightly from the matrix determined
using the basis functions. It is important to note that any
matrix €'= asC, where a is any constant, will yield the same
transition matrix, ?, because the similarity transformation

requires the multiplication of T'by both € and ¢-1.

Use for Pigtailed Optical Sources: In order to measure
the modal power vector of a pigtailed optical source, the
mode selective detector is used as a ‘stand-alone’ unit. The
connectorized pigtail of the optical source is mated to the
detector input connector. A single pair of optical switches
provides two independent power measurements, Pp and Py, where
the subscripts correspond to low-order and high-order
detection. The two measurements are arranged into a column
vector and then multiplied by the transformation matrix, ¢, to

yield the input power vector, ?i, which can be used in system

performance predictions.
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Experimental Results

The mode transition matrix of the coupled port of the fiber

optic power splitter labeled Cl in Figure 6, page 24, was

determined using the mode transition matrix measurement

system.

The input and output power matrices of equation (38)

are given in Table 4, together with the calculated matrix,

T'.

This matrix was transformed using the two transformation

I = [ 8054 746 ) 0.230  0.104
= | 96.83  319.2 0.077  0.376
o= [17.70 26.61 © 0.233  0.079
= L 3266  131.2 0.105  0.375
TV = [ 0.166  0.044 @ [ 0.250  0.086 ]
~0.123  0.440 0.118  0.421
(a)

Table 4. (a) Input and Output Power matricies and the resultant Transition

Matrix measured using The MTM Measurement System. (b) and (c) MTMs calculated
from the similarity transformations using the transformation matrices described
in Equations (43) and (44) respectively, and (d) MTM calculated from a measurement
of the Near Field Patterns entering and exiting the device under test (reproduced
from Table 1).

matrices given in equations (43) and (44). The results are
presented in Table 4 together with the Mode Transition Matrix
determined previously using the Near Field Pattern technique.
There is good agreement between the matrix values for all

cases.
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ALTERNATIVE APPROXIMATION TECHNIQUES

There are several alternate methods to characterize the modal
characteristics of multimode fiber optic components. Two
other methods which deserve mention are 1) differential mode

attenuation, and 2) mode transfer function.
Differential Mode Attenuation

In some passive fiber optic components, it is possible that
there is little coupling between modes of different

propagation constant. In this case, the mode transfer

function, T(d,08') can be written as

T(3,0") =

TG) 6=9
6290

(45)

The integration over &' of equation (14) can now be done

yielding a solution of the form

T(S) = P°®)

P(3) (46)
This is a very special case of the general problem, and it
must be determined experimentally which optical components

can be described with this method.
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Mode Transfer Function

The functional form of the transfer function of equation (14)
might be deduced from a knowledge of the properties of the
fiber optic component. For example, in a low-loss fiber
optic connector, Yang, et al3 assume that a Gaussian coupling

function exists

T(R,R") = 8(R-R') - [ dR" mR")a(R",R)d(R-R") + m(R)a(R,R") (47)

where

|29
no1 .
a(R,R 2aoe = (48)

where o and T are fitting parameters (R is the mode
parameter to avoid confusion with the delta-function), which
can be determined from a measurement of the loss and the near
field patterns entering and exiting the device under test for
a single excitation. Mode transition matrices can be
generated from this transfer function for any basis set using
equation (18). The limitations of this technique lie in
one's ability to accurately assume, a priori, a form for the

transfer function of complicated passive fiber optic devices.
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COMPUTER SOFTWARE

Three computer programs have been written to support the mode
transition matrix investigation. The first program stores
the digitized near field pattern data together with the total
optical power and the fiber radius. The near tield pattern
data is then fit to a linear combination of user chosen basis
functions using a curve fitting program. The two basis sets
presently available are Chebychev and Hermite polynomials.
This second program also differentiates the near field
pattern fit algebraically using the well known recursion
relations for these polynomial functions, and thLen calculates
the modal power distribution from this derivative. Finally,
the program integrates the modal power distribution into
modal power vectors and records the coefficients. The third
program calculates the mode transition matrix of the device
under test from the modal power vectors associated with the
input and output near field patterns of two independent
excitation conditions. All programs have been written in
Rocky Mountain BASIC for use by an HP 9826 laboratory

computer,

Also available from the author is a program which calculates
the fiber radius from the near field pattern. The program
requires the NFP for an overfilled launch condition and

calculates the radius from the -16dB points.
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CONCLUSIONS

The mode transition matrix method has been determined to be a
useful method to characterize the mode coupling present in
passive fiber optic components. The experimental method,
however, is quite complicated and requires much computational
analysis. Input and output near field pattern data must be
recorded for two independent launch conditions and then
differentiated to calculate the modal power distribution.
Because direct differentiation results in amplification of
the noise inherent in the measured data, a smoothing routine
or curve fitting operation must be applied. Through the use
of fiber optic switches and mode filters, an optical system
has been designed which can quickly and easily approximate
the mode transition matrix. The method requires only the
total optical power entering and exiting the device under
test be recorded, and all mathematical operations are limited
to algebraic operations of matrices. 2 patent disclosure has
been submitted on the device (Navy Case # 73670). Other
techniques exist which allow a description of the modal
properties of fiber optic components. Two of these methods,
differential modal attenuation and mode transfer function,
were discussed. The assumptions made by each method as well

as their limitations were presented.
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